In-Situ Testing of Gas Orifice Meters

By: Ron Beaty, PE
    David Simpson, MSME
    both of Amoco Production Co.

Overview

- Why do we do in-situ testing
- Test Equipment
- Design Considerations
- Summary
Elements of a *Differential Producer*

- **Primary Element**—mostly steel; subjected to pressure, temperature, and flow velocity, but no electronics
- **Sensing Element**—electronics and exotic metals; subjected to pressure and temperature, but not flow; generates electronic signals or pen movements.
- **Recording Element**—Electronics or pen & ink; only sees electronic signals or pen movements
- **Differential Producers are *Inferential Devices***
  - Assuming all conditions match reference conditions you can use Bernoulli’s Equation to infer a flow rate from a differential pressure across a known restriction

**Assumptions in Calculations**

- Constant density at each snapshot
- No friction
- Tube is straight and level
- Gas does no work
- Flow profile matches power law
- Single phase flow
- Atmospheric pressure known precisely
- Fluid properties known and constant for each snapshot
- Enough friction to dampen swirl
- Press and Temp known
- Tube roughness in narrow range
- Plate condition meets specs
- Plate bore concentric to tube bore
Measurement System Accuracy

- Each element of a measurement system is:
  - manufactured to close tolerances
  - inspected by the manufacturer and purchaser
  - installed to precise specifications
- After all that, what can still be wrong?

What can be wrong with a new installation?

- Flow profile
- Backwards plate
- Beta Ratio
- Incorrect station parameters
- Non-rigid mounting
Flow Profile

- Problem
  - 25% of flow not in center
  - 20% of pipe
  - Error can be low by 5% or more
- How to prevent it
  - Upstream piping
  - Flow Conditioners and/or Straightening vanes
- How to detect it
  - In Situ Testing

Backwards Plate

- Problem
  - Leading edge shaped like a venturi
  - Reading can be as much as 26% low
- How to prevent it
  - Attention to details
- How to detect it
  - In Situ testing
Beta Ratio

- Problem:
  - Uncertainty in gas measurement is controlled to a large extent by beta ratio
    - Less than 0.3, uncertainty is a function of edge sharpness and concentricity
    - Greater than about 0.62, it increases very quickly
  - Combined error can be 7%
- How do you prevent it
  - Proper station design
- How do you detect how “uncertainty” equates to “error”
  - In Situ Testing

Incorrect station parameters

- Problem
  - Any of the parameters from gas analysis to Tube ID will affect the conversion of dP, P, and T to flow rate
  - Combined error can be over 10%
- What can you do to prevent errors
  - Double check original input (two people)
- What can you do to detect errors
  - Verify all parameters each calibration
  - In Situ Testing
Non-Rigid Mounting

- **Problem**
  - The gas does work (reducing dP)
  - up to 15% error
- **How to prevent**
  - Independent braces
  - Use hold-down bolts
- **How to detect**
  - Inspection after installation
  - *In-Situ* testing

Installation Verification

- To insure that a new station meets its potential:
  - Install all the parts at their final location
  - Use “normal” gas at “normal” temperature and pressure
  - Design a test manifold that ensures that all gas goes through the test skid after the new station
  - Use a certified test skid
When to Test

- As part of station commissioning process
- Regularly on very large volume stations
- Regularly on particularly erosive/corrosive or dirty applications
- When routine plate inspections point to a problem

Test Equipment

- Uncertainty
- Calibrated Differential Producer
- Proportional devices with provers
  - Turbine meters
  - Vortex-shedding meters
- Inferential vs. Proportional devices
- Calibration methods
Uncertainty

- Uncertainty means “you don’t know”
- No conclusions can be drawn from data beyond the uncertainty range, for example:
  - If a calibration device is stated to be ±0.5%
  - Your tested device is off by 0.6%
  - Actual results are 0.1-1.1% and the meter has a bias high
- Consequently:
  - A calibration device can only certify a calibrated device to within twice its uncertainty (i.e., a 0.25% device must be used to calibrate a 0.5% device)
  - Midpoint of a confidence range must fall within the dead-zone around zero (i.e., the center of a 90% confidence range from a 0.5% skid must be in the range -0.5-0.5%)

Calibrated Differential Producer Skid

- As long as:
  - The test manifold has positive isolation between inlet and outlet
  - Sensing elements on test skid are calibrated before every test
  - Orifice plates on test skid are inspected before and after every test
  - Tube on test skid is inspected quarterly
  - Recording elements are verified against a calculation standard frequently
  - The skid is certified against a primary standard annually to be within ±0.5%
- A properly designed Differential Producer Skid can be used to certify a station is ±1.0%
Proportional Devices

- All have some moving part that is proportional to mass flow rate (motion can be gross like a turbine rotor or microscopic like the vibration frequency of a vortex)
- They are all prone to:
  - Foul in dirty fluid (20 mils of paraffin on a turbine blade caused the reading to be 2% low in one test against a primary standard)
  - Have bearing or vibration-sensor wear that is not obvious on recording element
- A Proportional Skid must be calibrated against a primary standard before and after each station test

Inferential vs. Proportional

<table>
<thead>
<tr>
<th></th>
<th>Inferential</th>
<th>Proportional</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pros</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- No moving parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Well understood in field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Very rugged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Useable in dirtier fluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cons</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Narrow rangability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- “Flow” measurement unrelated to fluid density</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pros</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Good rangability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Flow measurement is directly related to mass flow rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cons</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Moving parts prone to fouling and wear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Must be recalibrated before and after each use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Should not be used with dirty fluids</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration Methods

- Piston Prover
- Sonic nozzle
- Primary standards not discussed in this paper:
  - Weigh tanks
  - High pressure Bell Prover

Piston Prover

- Piston used to quickly develop “k-factor” for turbine meter
- Turbine meter is used to prove station being tested
- After test, turbine can be re-proven
Piston Prover Design Considerations

- Piston run times related to flow by:
  - Precise displacement volume
  - Exact duration of travel between detector switches
  - Exact count of piston round trips
- Obstacles to use in gas
  - No U.S. standards exist for piston provers in compressible flow (some European countries have adopted procedures and ISO is evaluating)
  - Gas pressure must increase to overcome piston inertia
  - Fairly small volume capacity
- Techniques to overcome obstacles
  - New correlations based on equations of state
  - Bi-directional pistons
  - Fast-acting, electronically operated diverter valves
  - Acceleration/deceleration regions before/after measured volume
  - Use Piston to prove turbine and turbine to prove installed station

Sonic Nozzle

- Under most conditions, a compressible fluid is limited to speeds less than or equal to the speed of sound
- Sonic (or Critical Flow) nozzles use a substantial pressure drop to force the gas to the speed of sound
  - With an open-ended pipe sonic velocity is reached when downstream pressure (psia) is less than 1/2 upstream pressure
  - Properly designed convergent/divergent nozzles can reduce this to about 20% pressure drop
- With careful measurement of upstream pressure, temperature, and gas composition; very accurate (about ±0.25%) mass flow measurement is possible so volumes can be accurately determined
Sonic Nozzle Limitations

- They require a large differential pressure, so:
  - It can be difficult to get the gas back into the line
  - If hydrocarbon gas is discharged to atmosphere, care must be taken to avoid an explosive atmosphere
  - Liquids can drop out of gas
  - Temperature drop can cause hydrates to freeze
- They are not effective in multi-phase flow
- Calculations require careful evaluation of:
  - Atmospheric pressure
  - Upstream temperature and pressure
  - Density
  - Compressibility

Sonic Nozzle Use in In-Situ Testing

- Considerations
  - Use dry air or non-flammable gas as test fluid
  - Ensure that operating personnel are careful, competent, and observant
  - Verify that atmospheric pressure and gas composition are the same in EFM unit as in test-facility computer
  - Verify that EFM unit uses the same Temp and Pressure base as the test facility
  - Verify that EFM unit uses the same compressibility calculation as test facility
- With proper diligence, a sonic nozzle can be used to certify that the differential producers on a test skid are accurate to ±0.5% of volumetric flow rate
Test Skid Design Considerations

- Flow conditioning
- Capacity and Rangeability
- Operating pressures and temperatures
- Flexibility
- Data Capture
- Transportability

Why do we need Flow Conditioning?

- Any device used on a test skid will be sensitive to flow profile problems
- Confined-space piping on test skid will contribute to poor flow profiles
- Swirl and asymmetry cause flow-rate errors that are related to compressibility and density
- Flow conditioners with straightening vanes are required to get repeatable results that can be transferred from one type of gas to another
Changes in Compressibility

Capacity and Rangeability

- Skid capacity should be
  - Large enough to handle max expected volume
  - Small enough to be within design conditions for min volume
  - Appropriate to keep sensing elements within 10-90% of calibrated range

- Example
  - A differential producer has a range of about 6:1 (assuming arbitrary limitations on beta-ratio of 0.3-0.6 and dP of 45-105")
  - A skid with one 3-inch and one 6-inch tube (and the piping to run them in parallel) has a range of almost 39:1 (with the same limitations)
Operating Pressures & Temperatures

- The test skid (excluding hoses) should be designed to handle 150% of design pressure on highest design-pressure station in the operation
- Increase hydrostatic test pressure to compensate for the lowest ambient temperature expected
- Hoses should be:
  - Designed for most-likely pressures and temperatures
  - Labeled with MAOP
  - Tested to 150% of MAOP annually (hold test for 24 hours)

Flexibility

- The test skid should be able to:
  - Use one meter to evaluate one stream
  - Use some combination of skid meters in parallel for larger streams
  - Simultaneously evaluate multiple flow streams
  - Re-measure a given stream multiple times
- Possible reasons to re-measure
  - Compare one meter to another to quickly evaluate “calibration”
  - Evaluate impact of damaged plates
- Streams must be positively isolated from each other
  - Double-Block-and-Bleed valves
  - Spectacle blinds
Flexible Flow

Normal Flow

Parallel Flow

2-Stream

Serial Flow

Data Capture

- Types of data
  - Prover reports
  - Flow Parameter reports
  - Volume reports
- Data should be available on both paper and ASCII files
- Data should be able to accumulate/summarize data over flexible time frames
- For each time frame, capture at least:
  - Cumulative volume for period
  - Average flow rate during period
  - Instantaneous flow rate at end of period
  - Average and snapshot temperature, dP, and static pressure for each calc
Data Analysis

- At least 30 time periods must be used, any number greater than 30 is acceptable
- It is better to use cumulative gas for each time period than to use flow rates
- Calculate:
  \[
  \text{Error} = \frac{\sum \text{Skid Volume} - \sum \text{Station Volume}}{\sum \text{Skid Volume}} \times 100
  \]
  - Total error should be less than 1%
  - Error for individual time periods should be computed and checked for:
    » Standard deviation of errors
    » Mean error
    » Count of periods above and below zero (worse than 60-40% distribution indicates a bias when n>30)

  \[
  \text{90% Confidence} = 1.65 \times \frac{\text{Standard Deviation}}{\sqrt{\text{Sample Count}}}\ CONFIDENCE(0.10, \text{Std Dev, n})
  \]

Data Analysis Example

<table>
<thead>
<tr>
<th>Acceptable Range</th>
<th>Meter 1</th>
<th>Meter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Error</td>
<td>-1% to 1%</td>
<td>-0.88%</td>
</tr>
<tr>
<td>Mean Error</td>
<td>-0.99%</td>
<td>-0.07%</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>0.58%</td>
<td>0.42%</td>
</tr>
<tr>
<td>90% confidence</td>
<td>-1% to 1%</td>
<td>-1.10% to -0.88%</td>
</tr>
<tr>
<td>Count &lt; 0</td>
<td>32-48</td>
<td>75</td>
</tr>
<tr>
<td>Count &gt; 0</td>
<td>32-48</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Bias low</td>
<td>Accurate Meas</td>
</tr>
</tbody>
</table>

Notes:
- Total error and mean error values -0.5 to 0.5% mean “accurate values” no conclusions can be drawn about where a number falls in that range
- Midpoint of 90% confidence range must fall between -0.5 to 0.5% on passing tests
- Rule of thumb count range
  » 30 < n < 100  ==> acceptable range = 0.4n to 0.6n
  » n > 100      ==> acceptable range = 0.45n to 0.55 n
Transportability

- Considerations
  - Weight
  - Width (limited to about 8-feet)
  - Fitting all piping/equipment onto skid
- Non-negotiable items
  - Isolation between streams must be positive (either block and bleed or spectacle blinds)
  - Differential producers must have dual-chamber fittings
  - Flow profile-isolating conditioner must be installed upstream of each station

Transportability Options

- Truck Mounting
  - Larger weight-carrying capacity
  - Considerable flexibility in skid size
  - Leveling can be tricky
  - Transportation for driver can be a problem after hook-up
  - Bed height can be a problem with operations personnel
- Trailer mounting
  - Many weight/size compromises needed
  - Axles and tongue (or 5th wheel) need to be matched to weight
  - Less expensive than truck-mounted
- Cargo
  - Least expensive
  - Least convenient for moving
Summary

- *In-Situ* testing is both necessary and practical
- It ensures
  - The measurement system works together
  - Large stations continue to work
  - Stations in dirty/corrosive/erosive streams continue to work
- Skid certification:
  - Proportional skids should have a built-in prover
  - Differential-producer skids should be calibrated periodically
- The skid must be designed to
  - be transported, leveled, and connected to the process gas
  - allow a wide variety of flows
  - work with expected fluid pressures, temperatures, and fluid qualities
  - capture data consistent with installed equipment