Deliquification vs. Artificial Lift

By David Simpson, PE

MuleShoe Engineering

Copies available at www.muleshoe-eng.com/id2.html

Deliquification vs. Artificial Lift

- Introduction
- Deliquification methods that evolved from Artificial Lift
- Gas-specific deliquification methods
- Conclusion
Introduction

• In the last 50-100 years, gas has gone from being a waste product that hindered oil production to a primary, sought after product
• Current gas prices are causing operators to rethink the terms “economic limit” and “abandonment pressure”
• Operators are reaching original abandonment pressure while the field is still very profitable
• What do they have to do differently to remain profitable down to very low reservoir pressures?
• The biggest difference is “Deliquification”

Working Definitions

• Artificial Lift: application of external energy to lift a commercial product from reservoir depths to the surface
• Deliquification: application of energy to remove an interfering liquid to enhance gas production
• The key difference is that it matters where and in what condition artificially-lifted oil ends up, but water just needs to be gone
 – Evaporation is a reasonable deliquification method, but it would be an artificial-lift failure
 – Pump discharge below a packer is reasonable deliquification but not good for artificial lift
Net Positive Suction Head (NPSH)

- Net Positive Suction Head is the amount of external pressure at the inlet to a pump.
- The Required NPSH (NPSH-r) is the amount of external pressure required to ensure the pump operates full of liquid.
- The Available NPSH (NPSH-a) is the amount of external pressure available at the pump suction.
- It generally doesn’t matter if the NPSH comes from an actual hydrostatic head or an applied pressure (as long as the pump sees continuous-phase liquid).
- NPSH-r is very dependent upon fluid properties (mainly the boiling point, gas solubility, and vapor pressure)

NPSH in Oil Fields

- When the completions are downstructure, the oil will try to “seek its own level”
- Often, several hundred feet of fluid will sit above the pump inlet without harming reservoir performance
NPSH in Gas Fields

- Any fluid above the perfs will add to the backpressure on the formation
- Backpressure is a significant factor in production rate, but it is not simple:
 - Many wells have a “pressure window” that maximizes production
 - The window is defined by the sum of all sources of restriction to flow (e.g., friction, fluid interference within reservoir, and condensation)
 - Going outside of this pressure window will reduce gas rate
 - The pressure window moves with time
- There is never a clear relationship between NPSH-a and backpressure

Finding Fluid Level

- The environment downhole is tumultuous and no condition exists for more than a few seconds
- Liquid Water exerts 0.43 psi/ft
- Methane at 100 psig and 110°F exerts 0.00012 psi/ft
- A froth of gas and water is somewhere between
- A pressure bomb or surface reading can only see effective height
- A fluid shot will give you its best return and will usually be somewhere within the froth (generally will pick a height in the midst of the froth and overstate backpressure)
Where do you go to get more NPSH?

- **Change technology:**
 - A rod pump needs less NPSH than a jet pump
 - A progressing-cavity pump needs less than a rod pump
- **Downhole equipment:**
 - Gas separators
 - Mechanical devices to trip traveling valves
 - Vent piping, holes in tubing or pump
- **Remove pressure drops (screens, tail pipes, standing valves).** CAUTION:
 - Each of these devices has a reason for being there
 - Removing them is not without risks

Rat Hole

- **Defined:** space within the wellbore below the producing strata.
- **Functions:**
 - Collect fill and other wellbore trash
 - Raise NPSH-a without adding hydrostatic head on the formation
- **Downside of placing pump in the rat hole:**
 - Can concentrate solids in the pump suction
 - Harder to remove pump heat in the small volume of liquids around the pump
Technologies that evolved from Artificial Lift

- Pump-off control
- Stroking pumps
- Progressing cavity pumps (PCP)
- Electric submersible pumps (ESP)
- Gas lift
- Jet pumps
- Surfactants

Pump-off Control

- Inflow to gas wells is never very constant
- Pump-capacity requirements will change many times per day
- Using periodic fluid level shots will result in pumps running at the wrong speed most of the time
- Gross-level surface indications (e.g., flow rate, tubing-casing differential, etc.) happen too late to support needed changes (i.e., by the time you see the problem it is either over or has gotten much worse)
Pump-off control example

- Well makes 5 bbl/day and 25 MCF/d
- Rod Pump
 - 1-1/2 pump inside 2-3/8 tubing
 - 40-inch stroke
 - 4 strokes/min
 - Pump capacity 44 bbl/day
- Running on stop clock, 30 min on, 4.5 hours off
- Problem
 - The well averages 5 bbl/day
 - As hydrostatic head changes during the cycles the flow rate fluctuates wildly and pump is always gas locked
- Stop/start control works better in oil than in gas wells

Pump-off Control

- Oil & Gas Instruments, Inc.
 - Two probes
 - Upstream probe just an RTD
 - Downstream has RTD and heating element
 - Flow past the probes carries some of the heat away
 - If the heated probe gets hotter, then the fluid has less liquid and element sends signal to slow the pump down
 - If it gets cooler then it sends signal to speed the pump up
 - Setting the device in a dip helps prevent false negatives
Rod Pump

• Simple chamber with two valves
 – Chamber empties on downstroke
 – Chamber fills on upstroke
• With the pump liquid-filled, very little plunger movement is required to start pumping

Rod Pump

• Effective area of ball above seal is 57% of net surface
• Residual pressure in barrel is based on:
 – Pump leakage
 – Amount of gas in pump
 – Boiling point of liquid
• NPSH-r is:
 – Almost 43% higher than residual pressure
 – Typically 75-100 ft
Rod Pump
Produced Gas Lock

- If the pump is liquid-filled, very little rod movement required to open traveling valve.
- If the pump has considerable dissolved or free gas:
 - It must compress the gas to above discharge hydrostatic head before the traveling valve will open.
 - At 3,000 ft depth with 20 psig bottom-hole pressure the gas must compress to over 40 ratios.
 - The pump will travel up and down without pumping until
 - Leakage past the plunger fills the barrel with enough liquid to open the traveling valve, or
 - Bottom-hole pressure rises enough to open standing valve

Rod Pump
Steam Lock

- At low pressures, water boils at low temps (e.g., at 15” Hg, water boils at 160F)
- Compressing steam raises its temp (e.g., 40 ratios would raise temp from 160F to 1,300F)
- Leakage past barrel adds liquid to barrel
- Eventually a steam lock will develop enough pressure to open traveling valve and cool everything off.
Rod Pump
What does a Gas Lock look like?

Effect of backpressure on rod pumping

- Assume:
 - Flowing Casing pressure 0 psig
 - Pump set up for 20 bbl/day
 - Pump set depth 3,000 ft

<table>
<thead>
<tr>
<th></th>
<th>Zero MCF/d</th>
<th>1.0 MCF/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 psig</td>
<td>200 psig</td>
</tr>
<tr>
<td>Pump disch at 3,000 ft</td>
<td>1,311</td>
<td>1,511</td>
</tr>
<tr>
<td>dP across Plunger</td>
<td>1,280</td>
<td>1,480</td>
</tr>
<tr>
<td>Slippage (gal/day)</td>
<td>7.9</td>
<td>9.1</td>
</tr>
<tr>
<td>Time to break gas lock</td>
<td>4 hours</td>
<td>3.5 hours</td>
</tr>
</tbody>
</table>
Beam Units on Very Low Line-Pressure Gas Wells

- Need energy for control gas and blowcase
- One solution is a beam compressor
 - Unit fits on walking beam
 - Will move ≈50 MCF/d
 - Maintain accumulator vessel around 150 psig
 - Pipe fuel and control gas from accumulator
 - Any excess production goes to sales

Shorten Stroke Length

- Sometimes you just can’t slow a pump down enough to match inflow with outflow
- A solution is to go to a much smaller pump with a shorter stroke length
- If you can’t economically reduce the height of the wellhead, you can raise the pump
Progressing Cavity Pump (PCP)

- Rotor has a profile with a slight pitch.
- Each revolution causes the liquid in the cavities to move up the pump barrel.
- PCP’s are positive displacement pumps and can develop very high discharge pressures.
- Pumps turn fairly slowly (60-300 rpm):
 - Very resistant to damage from solids in a slurry.
 - Not resistant to damage from running dry.

PCP

- Can be a significant mechanical load on wellhead
- Slow speed required for high solids
- Maintain fluid level to prevent heat rise due to compression of gas
- Heat of compression:

<table>
<thead>
<tr>
<th>BHP (psia)</th>
<th>BHT</th>
<th>1000 ft</th>
<th>2000 ft</th>
<th>3000 ft</th>
<th>5000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>100°F</td>
<td>809°F</td>
<td>1,018°F</td>
<td>1,160°F</td>
<td>1,362°F</td>
</tr>
<tr>
<td>50</td>
<td>100°F</td>
<td>494°F</td>
<td>651°F</td>
<td>758°F</td>
<td>910°F</td>
</tr>
<tr>
<td>100</td>
<td>100°F</td>
<td>350°F</td>
<td>483°F</td>
<td>574°F</td>
<td>703°F</td>
</tr>
</tbody>
</table>
PCP

- NPSH-r is about 60 ft
- Failure to meet NPSH-r results in:
 - Excessive heat of compression
 - Overheated stator
 - Stuck pump
- Pump can only run dry for a few minutes
 - New pump-off controls act very quickly on reduced flow to slow pump down
 - Controls will not stop pump if flow stops
 - Oversized stators have not really worked well in no-flow conditions

Electric Submersible Pump (ESP)

- Multi-stage centrifugal pump
- The impellor slings water from the eye at the center to the volute at outside edge to trade decreasing pressure for increasing velocity
- The volute has an increasing cross section to trade decreasing velocity for increasing pressure
- Each stage discharges into next stage
ESP

- NPSH-r typically 150 ft
- Without adequate NPSH:
 - The first stage will cavitate.
 - The surface of the first-stage impeller will lose efficiency.
 - Subsequent stages will cavitate.
- Sometimes you can intermit the pump to align capacity with well performance:
 - Stopping pump will empty tubing back into formation
 - A standing valve can prevent emptying, but allows solids to settle out.
 - Settling solids can seize the pump and or/seal the standing valve.
 - A hole in the tubing above standing valve will let the pump backflush, but it steals capacity.
- Sand screens, standing valves, and filters decrease NPSH-a.

Gas Lift

- High pressure/high velocity gas is injected into annulus above a packer through gas-lift valves in tubing
- Combination of:
 - Liquid absorbing gas reducing density (80% of benefit)
 - Velocity effects (20% of benefit)
- Very popular in oil operations
 - Oil can absorb a large quantity of gas
 - Absorbed gas is easily recovered
 - Small footprint (one compressor can serve a number of wells)
 - Gas lift can’t be said to have an NPSH-r
Gas Lift in Gas operations

- Every operator tries it sometime, somewhere
- Gas lifting water:
 - Oil can absorb up to 15% of its mass
 - Water can absorb 0.15% of its mass
 - Gas lifting water takes about 5 times the energy required for a given liquid volume
- “Po Boy Gas Lift”
 - Gas lift without a packer or gas lift valves
 - Inject high pressure gas down annulus and hope that it comes back up the tubing instead of into the formation
 - It has been tried many times
 - It seldom increases liquid production at all
 - Both gas and liquid production usually increase when it is turned off

Jet Pump

- Have been used in oil fields for over 50 years
- Convert pressure to velocity
- Traditional Oil Field Pump:
 - Seats in a packer
 - Power liquid usually down tubing
 - Well production and Power Fluid exhaust up backside
Jet Pump

- Traditional pumps are rarely effective in gas wells because:
 - All well and power fluids must go through pump
 - Ports and nozzles are too small for flow rates
- Gas as Power fluid
 - Shape of the throat is wrong for efficient ejector operation
 - Could be done with a very large pump and a redesigned throat (more of a “downhole compressor” than a water pump)
- Tubing Pumps:
 - Two tubing strings (either dual or concentric)
 - Power water down inner or side string
 - Well liquid and exhausted power liquid up tubing/tubing annulus (or main tubing)
 - Gas production up casing/tubing annulus

Jet Pump

- NPSH-r varies by nozzle/throat combination, but it is seldom less than 460 ft (200 psig)
- Cavitation damage occurs in the entrance to the throat
- When the pump cavitates it stops pumping immediately
Surfactant

- Soaps, foamers, and other surfactants are designed to foam and:
 - Introduce voids that lighten the liquid column
 - Reduce the surface tension of the liquid drops to minimize their size/weight
- All soaps have to be activated by agitation
- Care must be exercised to ensure that the soaps are activated downhole
 - Unactivated liquid soap will often activate and foam in the production/measurement equipment
 - Foaming in the gathering system will tend to increase the condensation surface and increase water problems
 - Liquid soap is “gummy” and can increase skin

Deliquification Techniques

- Velocity String
- Tubing-flow controller
- Plunger
- Vortex tool
- Evaporation
Velocity String

 - Showed liquid volume that reached surface to be a function of gas velocity which is a function of interfacial tension and fluid density
 - Virtually all data taken above 1,300 psig
- Many other researchers have built on this concept with new interpretations of Turner’s data and some new data sets
- It is certain that at some increasing velocity, liquid volume transported to the surface will begin to increase
- The magnitude of that number and the method of determining it will continue to be a source of heated academic debate

Critical Flow

- For a particular well:
 - Tubing set-depth = 3,000 ft (2-3/8” 4.7 lbm/ft J-55)
 - Flowing wellhead Pressure = 4 psig
 - Flowing wellhead temperature = 80°F
 - Flowing bottom-hole temperature = 105°F
 - Production (just up tubing) = 130 MCF/d, 5 bbl/MMCF
- Critical Flow
 - Turner = 158 MSCF/d (loading)
 - Coleman = 132 MSCF/d (onset of loading)
- Flowing bottom-hole pressure
 - Gray Correlation = 55 psig
 - Orkiszewski Correlation = 308 psig
 - Cullender-Smith Dry Gas Correlation= 30 psig
 - Duns-Ros Correlation = 135 psig
- Measured flowing bottom-hole pressure = 8 psig (no sign of loading there)
- Take anyone’s “correlations” with healthy skepticism and a complete understanding of their underlying assumptions
Velocity String

- A “velocity string” is a string of tubing that is intended to force normal gas flow rate to have a velocity greater than the “critical velocity”
- Higher velocity equates to higher friction drop
- Wells with velocity strings are very unforgiving:
 - If rate increases, friction will rapidly raise FBHP
 - If rate decreases slightly, you can drop below the actual critical rate and load up
 - A cold section in the wellbore can condense water vapor and upset the balance on a near-critical well
 - Aggressive velocity strings preclude both plungers and swabbing
- It is not a good idea to fully open the casing with a velocity string
 - Flow in the velocity string will drop to very near zero
 - The well is nearly assured of loading up and can be difficult to restart

Tubing-Flow Controller

- If you’re using a velocity string and the tubing/casing differential pressure is “excessive” then you can alleviate high friction drop by allowing some casing flow:
 - Must monitor tubing flow to make sure you stay above critical
 - Must throttle casing flow carefully to ensure that you don’t upset the tubing flow too much
- Most installations use:
 - Orifice meter on the tubing
 - Pneumatic control valve on casing
- This rarely works probably due to:
 - Relatively large dP caused by the meter
 - Sluggishness of the pneumatic valve
Tubing-Flow Controller

- You can use:
 - Pitot tube measurement
 - Electric V-Ball flow control
- This makes the system much more responsive
- Several wells have seen sustained performance improvements with this configuration

Plungers

- A plunger operates like a pipeline pig
 - Differential pressure across the plunger moves it up the wellbore
 - Any solids or liquids it encounters are pushed in front of it
- Differential pressure determines how much liquid a given well can lift
 - Disregarding friction, 10 psid can move:
 - No more than 2.5 gallons per trip in 2-3/8
 - No more than 4.4 gallons per trip in 2-7/8
 - To move 5 bbl/day with 10 psid in 2-3/8 requires at least four trips per hour (closer to 6 with a safety factor)
Plungers

• The various types of plungers are differentiated by:
 – Fall rate
 – Quality of seal
 – Efforts to clean pipe
• There is a narrow window in reservoir pressure where plungers are the best choice:
 – Early in life, there tends to be enough FBHP that the well doesn’t need assistance
 – Late in life the pressure required to lift a plunger plus a load of water is greater than the pressure available

Vortex Tools

• People have been studying rotational flow since the 1800’s
• Simply put,
 – They want to know how nature gets from this
 – To this
• The Coriolis effect doesn’t have the horsepower to transfer enough energy fast enough to explain it
Vortex Tools

- Hurricanes last for weeks
- Tornadoes last for hours
- If a man-made vortex can be controlled to last for 10-15 minutes it could be valuable
 - Typical critical velocity often 50 ft/sec
 - 10 minutes at 50 ft/sec = 30,000 ft
- Vortex tools have been shown to lower critical velocity by about 30%
- Vortex tools tend to sling liquids to the outside of the pipe while minimizing the gas/liquid interfacial tension

Evaporation

- Whenever there is a coherent gas/liquid interface, liquid will evaporate until the gas at the surface of the liquid is at 100% relative humidity
- Water vapor is not:
 - Fine spray (101-200 micron)
 - Mist (51-100 micron)
 - An aerosol (1-50 micron)
- A water vapor molecule is 0.00038 microns
- Separator mist extractors are usually rated at about 20 microns
- As wellhead pressures diminish, the amount of water that gas can carry as “humidity” increases dramatically
Evaporation

• At low pressures evaporation is often adequate by itself
• If you are relying on evaporation, then critical flow is irrelevant:
 – Water vapor will move as a gas
 – The gas doesn’t have to drag the water drops along
 – You want the gas to move as slowly as possible to minimize friction
 – It can be a good idea to remove the tubing altogether
• Separators will not accumulate liquid except what condenses due to vessel temperature being lower than dew point
• The water will condense in the piping as distilled water
Phase-Change Scale

- Produced water is usually at least 10,000 mg/l TDS
 - Flashing a barrel of water deposits 3.5 pounds of solids somewhere
 - NaCl turns into salt blocks (eventually soluble in hot water)
 - Bicarbonate (HCO$_3$) turns into Nahcolite (NaHCO$_3$) that is granite hard and barely soluble in strong acid

Accelerating Evaporation

- Change thermodynamic conditions:
 - Raise temperature
 - Lower Pressure
- You can usually change pressure more economically than you can change temperature so your options are:
 - Reduce gathering-system pressure
 - Pipe becomes much less efficient
 - Pneumatic wellsite equipment may not work anymore
 - Very difficult to shift liquid from vessels
 - Wellsite compression is less efficient than central compression, but it avoids the other problems
Typical Wellsite Compressor Types

<table>
<thead>
<tr>
<th></th>
<th>Eff</th>
<th>Limit</th>
<th>Max Ratios</th>
<th>Typical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Ring</td>
<td>50-60%</td>
<td>Boiling point of liquid</td>
<td>4-6</td>
<td>Vacuum to slight positive pressure</td>
</tr>
<tr>
<td>Dry Screw</td>
<td>60 - 72%</td>
<td>Disch temp</td>
<td>5</td>
<td>Control air</td>
</tr>
<tr>
<td>Centrifugal</td>
<td>65 - 75%</td>
<td>Disch temp</td>
<td>5/stage</td>
<td>Plant Inlet (no oil in gas)</td>
</tr>
<tr>
<td>Flooded Screw</td>
<td>70 - 82%</td>
<td>Max suction Press</td>
<td>10-20</td>
<td>Varying suction</td>
</tr>
<tr>
<td>Reciprocating</td>
<td>78 - 88%</td>
<td>Rod load or disch temp</td>
<td>4.5/stage</td>
<td>Varying discharge</td>
</tr>
</tbody>
</table>

Eductors/Ejectors

- From the family of thermocompressors that includes Air Ejectors, Evacuators, Sand Blasters, Jet Pumps, and Eductors
- High pressure gas entrains and compresses suction gas and the combined stream is left at an intermediate pressure
- Up to 10 compression ratios are possible, limited by:
 - Power gas mass flow rate (fixed by nozzle size and upstream pressure and temperature)
 - Suction gas mass flow rate
 - Suction pressure and temperature
 - Discharge pressure
- Efficiency 40-70%
Eductor Application

- Everything sucks
 - Compressor sucks on tubing/casing annulus
 - Eductor sucks on tubing to maintain liquid level very near end of tubing
- Small amount of hp
 - 32 hp for power gas
 - 14 hp used in eductor
 - $\varepsilon=44\%$

Ejector Well

#102 Exhauster at 10 psig exhaust

- 50 psig pw r (174 MCF/d)
- 100 psig pw r (316 MCF/d)
- 200 psig pw r (600 MCF/d)
- 300 psig pw r (884 MCF/d)

All data evaluated at 7000 ft AASL elevation. Flow rates should be increased 1% per 1000 ft below 7000 ft.
Conclusion

• Deliquification is different from Artificial Lift and it requires different:
 – Tools
 – Mind set
 – Staffing levels

• No technology is set-and-forget:
 – Be prepared for any given technology to work or fail to work on any given well (regardless of “similar” wells in the same field)
 – Expect to spend considerable field and engineering effort to “get it right” only to find that as pressures change it doesn’t work any more

• There is no “silver bullet” for deliquification